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Industrial robotic 3-DOF manipulators are currently designed with very simple geometric rules.
In order to enlarge the the possibilities of such manipulators, it is interesting to relax some con-
straints.

The behavior of the manipulators when changing posture depends strongly on the design pa-
rameters and it can be very different from the one of manipulators commonly used in Industry.
P. Wenger and J. El Omri [6], [10] have shown that for some choices of the parameters, 3-DOF
manipulators may be able to change posture without meeting a singularity in the joint space. This
kind of manipulators is called cuspidal.

It is worth noting that in case of obstructed environment, this property would yield more flexi-
bility which can be very useful in practice for industrial purpose.

They succeed in characterizing 3-revolute jointed manipulators using a homotopy based classifi-
cation scheme [9], but they needed general conditions on the design parameters, more precisely they
wanted to find answers to the following issues:

e Problem 1 : For given parameters, is the manipulator cuspidal?

¢ Problem 2 : For which values of the parameters is a manipulator cuspidal?
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Figure 1: The manipulator under our hypothesis
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We restrict the study to 3-DOF manipulators as described in figure . As recalled in the first
section, testing if such a manipulator is cuspidal or not is equivalent to deciding if an algebraic set
has real roots or not (the first problem, equivalent to decide if a zero-dimensional algebraic system
has real roots or not, is a particular case of the second one).

We manage to answer both questions under a few hypothesis which are not restricting ones
according to roboticians : for example it is impossible to construct, in practice, a manipulator
whose parameters lies on a strict hypersurface of the space of the parameters.

Precisely, we compute a partition of the space of parameters, such that in cell of maximal
dimension, the behavior of the manipulator is known (cuspidal or not) while the other cells are
embedded inside strict algebraic subsets of the parameters’ space.

1 The kinematic map

The 4 design parameters are da, ds, ds and ro. In order to normalize (da,ds3,ds,72) and to reduce
the number of parameters, we assume that dy is equal to 1.
Along our study, we will work into two different spaces:

e the joint space described by the joint variables (61,05, 63), this space is isomorphic to ] — 7, 7]*
as the joint limits will be ignored.

e the task space representing the position of the end-effector in the Cartesian coordinates
(z,y, z), which is isomorphic to R? (no obstacles).

The kinematic map f maps the joint space on the task space :
f:]-mrP — R
(91a92703) — (x’sz)

The image of this map in the task space is called the workspace.
Under our hypothesis, the expression of f is the following one:

x = (d3+ cosfsdy)(cos by cosbs) + (1o + dysinb3) sin by + cos 0,
y = (d3+ cosf3ds)(sinby cosbs) — (1o + dyssinfs) cos b + sinby (1)
z = (ds+ cosf3dy)sinbs

2 Algebraic characterization of cuspidal manipulators

The cuspidal manipulators are the ones able to change posture without meeting a singularity in the
joint space. It was shown in [6] that a 3-DOF manipulator can execute a non-singular change of
posture if and only if there exist at least one point in its workspace with exactly three coincident
inverse kinematic solutions (corresponding in a cross section of the workspace to cusp points, hence
the word cuspidal).

Expressing such a condition using directly the kinematic map lead to solve a huge system of
equations.

By taking s; = sin(6;) and ¢; = cos(6;),i = 1...3 and ¢t = tan(f3/2) and adding the algebraic
relations s7 + ¢? =14 =1...3 and s3 = 2t/1 — t?,¢5 = (1 + t?)/(1 — t?), we have to study an
algebraic system of equations. On can then show that under the conditions z? + 2 # 0 and z # 0,
deciding if a robot is cuspidal is equivalent to deciding if a polynomial P of degree 4 in ¢ (whose
coefficients are polynomial with respect to z,y, z, ds, d3,72) admits real triple roots. Moreover, to a
triple root of P corresponds one unique cuspidal configuration.
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The full expression of P is the following : P(t) = (at* + bt + ct? + dt + e), with

a = ms—my+mg my = —R+z2+r§+£RL4—LL2

b = —2ms+2my my = 2reds+ (L —R—1)dyrs

¢ = —2my+dmg+2mg ,{ M2 = (L= B-1)dds , with R = 22 + 42 + 22 and
d = 2mz+2m; Zi z Zg%;jg({ﬁ )

¢ e ms = d%dg2

L=dj+d}+r3.

We will show later that the design parameters dy,ds,r2 of cuspidal manipulators such that
z(z? 4+ y?) = 0 are in a strict hypersurface of R3.

So, finding parameters’ values defining cuspidal manipulators remains to find the values of
dy,ds, 9 such that P(t) has triple points by solving the following system (as the boundaries of
the workspace form a revolution surface around the axis Oz, it is generically zero-dimensional once
the parameters are fixed) :

P =0

J)

S ®
5 = 0

3 Partition’s boundaries of the parameter’s space

Solving system 2 consists in finding values of the parameters dy, d3, 2 such that the induced robots
are cuspidal or equivalently such that the system 2 admits real roots. Precisely, our goal is now to
compute a partition of the parameter’s space such that the number of real solutions of system 2
in each cell is constant. Due to practical constrains, we are only interested computing one sample
point or a bowl in the cells of highest dimension : the other possible cells will be embedded inside
strict algebraic subsets of the parameter’s space.

3.1 Second elimination step

Due to she shape of the system to be solved and to the properties of the solutions (the boundaries
of the workspace form a revolution surface around the axis Oz), our first step consists in eliminating
two of the variables £, R and Z = 22 in the system 2. The hope is to obtain an eliminating
polynomial depending on the parameters d4, ds, 2 and on one of the three variables ¢, R and Z, with
uniquely defined solutions with respect to the two remaining variables in the fibers. Theoretically,
the possibility of getting such an equivalent system without loosing the algebraic structure (ideal)
depends strongly on the shape of the solutions and is in general not possible.

So, we choose to represent the solutions of system 2 as reqular zeroes of triangular sets (with
respect to the terminology of [1]), with the hope that the non regular solutions correspond to values
of the parameters contained in strict hypersurfaces of the space of the parameters.

Thanks to an clever intermediate change of variables (after several attempts), we manage to
define the solutions of the problem as regular (with respect to the terminology of [1]) roots of a
triangular system with the following shape :

surf(R,dy,ds,m2) =0
lez(ds,ds,r2)Z + trz(R,ds, d3,72) (3)
lCt(d4, d3a TZ)t + t’rt(R, Za d4a d37 7‘2)
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3.2 Regular solutions conditions

The solutions of system 3 which are regular in the triangular sets terminology lies on strict algebraic
varieties in the parameter’s space defined by the equations : lcz(dy,ds, 9) = 0 and lci(dyg, d3, r2) = 0.

In other words, system 3 describes all the solutions of the problem for values of the parameters
taken outside the two algebraic varieties lcz(dy,ds, o) = 0 and lc(dyg,ds,r2) = 0, which are closed
subsets of strict smaller dimension of the parameter’s space and so can be excluded for practical
issues.

3.3 Real Roots existence

Under the conditions given previously, the initial system has real solutions if and only if the poly-
nomial surf has real positive roots with respect to variable R. The number of real roots of surf
varies if and only if its discriminant or its leading coefficient with respect to R vanishes.

So, the last set of equations to be computed for defining our partition of the parameters’ space
in cells where the number of real solutions to system 3 is constant is defined by these two conditions.

Let denote by disg(dy,ds, r2) and lcg(dy, d3, r9) the two polynomials defining these two varieties.

The real roots of surf(R) = 0 must verify Z = 2> > 0 and R— Z = 22 +4? > 0 to be admissible.
Adding the condition Z = 0 (resp. R — Z = 0) to the system, give us (after an elimination process)
two polynomials in the parameters d3, d4 and ro.

Let note Hypz—o(d4,ds,r2) and Hypr—z—=o(ds, ds3,r2) those two polynomials.

4 Partition’s cells computation

As established before, in each connected subset of the parameter’s space where none of the fol-
lowing polynomials vanish disg(ds,ds,r2), lcg(ds,ds,re), Hypz=0(ds,ds,r2), Hypr—z=0(ds,ds,r2),
ley(dy,ds, o), ley(dy, d3, T2), the system 2 has a constant number of real solutions.

The best way for representing such cells is now to compute a partial CAD (Cylindrical Algebraic
Decomposition - see [3]) of R? adapted to this set of polynomials. For practical reasons, we are only
interested in finding one point or a bowl in the cells of higher dimension, embedding the other cells
inside algebraic subsets of the parameters’ space. This make much more easier the projection (much
less resultant computations) and lifting phases (no computations with real algebraic numbers) of
the CAD.

We mix several technics for computing this partial CAD ([5] for reducing the number of poly-
nomials to be computed, [2] for testing is some algebraic sets have real roots or not), and we finally
obtain at least one point with positive coordinates in the interior of each cell of higher dimension
and a set of algebraic sets that contains the other cells of the full CAD.

It is then sufficient, for each sample point, to solve the zero-dimensional system 3 (counting the
number of real roots) after specialization, adding the equations 71 Z? —1 = 0 and To5(R— Z)? -1 =0
to discriminate the admissible solutions, to get the number of cusps corresponding to the selected
set of parameters. This can easily be done using algorithmic solutions proposed in [7], [8] and [4].

5 Results

The final result of the full computation is a partial cellular decomposition of the parameter’s space
so that for each point taken in the interior of any cell, the number of solutions to the system 2.
Precisely, we have computed :

e at least on point in each cell, as far as possible from the boundaries of the cell;
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e the equations of the algebraic sets that bounds these cells;

In practice, we provided 6 polynomials and 105 sample points which represents a reasonable

output since it allows roboticians to analyse the results.
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