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Abstract

The idea of this paper is to illustrate and motivate a parallelization/decompositjon me
thod based on logical fiberings which was suggested by experimenting with several examples.

We start with some concrete small examples and then generalize the method to a whole class
of many valued logics - e.g. the Lukasiewicz case, in general. In that way we hope to pave
the way for future work aiming towards a representation methods of m-valued systems as

logical fiberings.

1 Introduction

The notion of a logical fibering had been introduced in the framework of an industrial case study
on applications of so-called “polycontextural logics”. These polycontextural systems actually
were under discussion in the Biological Computing Laboratory (Urbana, illinois) in the sixtieth
when an interdisciplinary group of scientists started an initiative to work on so-called second or
der cybernetics. This should extend considerably classical cybernetics especially in the direction
of modeling complex communications systems and cooperating autonomous agents. The basic
idea behind the polycontextural logic (PCL) was to provide each agent with a local individual
logic which was assumed to be a classical 2-valued first order logic. All the subsystems are
composed in a specific way by describing how they form as a whole a many-valued system (via
a so-called “mediation scheme” which imposes constraints on the collection of all the classical
truth values of local 2-valued systems which are labeled by the index of the corresponding sy
stem. Univariate and bivariate operations can be introduced which are built up by classical
operations coming from the individual 2-valued subsystems. A typical non-classical bivariate
connective, called transjunction, arises. A transjunction is an operation linking different sub
systems logically. For the interested reader in the report [Pfa9lb] we included some quotations
and typical motivating remarks and comments from the PCL literature in the report [Pfa9lb].
For a recently published monograph by one of the key researchers in PCL we recommend the
work by Kaeher and Mahler [KM94J.

The development of logical fiberings originates in work on the previously mentioned case study.
It has been motivated by the classical theory of fiber bundles, a powerful modeling language
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from geometry and topology, where typical local-global interaction of different structures can
be integrated in one concept. Thus, for example, in a vector bundle the fibers of such a fiber
bundle are vector spaces of a fixed dimension. Roughly spoken, vertically one does algebra and
horizontally (across the fibers) one is doing geometry/topology.

Concerning the (notion of) logical fiberings, as introduced in {Pfa9la], the idea was to replace
the fibers of a fiber bundle by a logical space (e.g. a 2-valued logic) and try to preserve all the
expressive power of the classical fiber bundle notion as good as possible. A typical problem point
arising here is that we are going to mix discrete with continuous structures in one integrated
concept, but this is part of the challenge. More generally spoken we want to extend this logical
fiberings approach to a generic modeling principle which allows to mix various logics in the
sense that we take various different logical spaces as fibers, putting them together (as a bundle
of fibers) over a base space manifold that serves as an index system with its own structure. The
development of such logical fiberings in terms of a flexible logical operational modeling tool is a
difficult task.

As a first result we established the fact that a PCL is a special class of a logical fibering
determined by a specified equivalence relation on the global set of truth values (which describes
the corresponding “mediation scheme”). In this sense the logical fiberings provide a framework
for a systematic construction of many-valued logics. This was pointed out by D. Gabbay and lie
further stated that they point to a general semantics for his extended theory of labeled deductive
systems (LDS), cf. [Gab9Ob, Gab9Oa, Gab94]. He coined the notion of “fibered semantics”.
Moreover he suggested to select special well-known 3-, or 4-valued logical connectives and to
express them in the framework of a special suitable logical fibering.

Some experimental studies in this direction were successful in the sense that they are suggesting
to think at a representation of many-valued logics by an associated logical fihering such that
corresponding bivariate operations of a specific many-valued system can be decomposed into
classical operations (corresponding to classical systems as fibers, respectively) and eventually
some transjunctions. The advantage of such a representation theory would be a “parallelization”
of a many-valued system and the reduction of corresponding operations to “fiberwise” classical
and some elementary non-classical operations (so-called transjunctioiis), respectively.

Further work in the direction of algebraic semantics where the possible world semantics in modal
logics is a starting point is under development. It is also linked to the framework of the notion
of logical fiberings.

Concerning general semantical modeling aspects the previous considerations are also connected
with other work which deals with semantical models for relational structures (using the language
of category theory) where sheaf semantics appear in a natural way (cf. [Pfa94j for a proposed
program of work in this direction).

Acknowledgements
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comments.
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2 Introductory and Motivating Examples

In the following considerations we use the same notation as in [Pfa9la]. Recalling notation, in
that work we briefly discussed an example of a bivariate logical function like

( x~ A Yi
XAVAY= x2Vy2

X3 A ~l3

With that it shall be expressed that the whole bivariate logical function (operation) is formed by
“putting together” local components defined in a 2—valued classical logical space (subsystem)
— considered as a “fiber” of the whole system which as a whole forms the underlying logical
fiberirig.

Here we are going to interpret the fiberings model exactly in the opposite direction: we intend
to use this approach to decompose a given rn—valued bivariate logical function into a number
of 2—valued components based on a corresponding underlying logical fibering which has to be
constructed, respectively.

Such a decomposition procedure might be of interest at least with respect to the following aspects
which arise naturally.

• Decomposing rn—valued operations into components as mentioned above results in a par
allelization of logical operations where one can work with classical operations in the com
ponents in parallel (“fiberwise”), respectively.

• A general representation theory of many valued logics by means of logical fiberings is
expected where it should be possible to represent a many valued space by a fibering of
2—valued spaces. More general, it should be possible also to “mix” logics and to model
“carse” and “fine grain” decompositions, i.e. having also many valued logics as fibers (and
not only 2—valued) — conceptually this is possible, in principle, with our approach.

It is the purpose of this contributioll to to collect some practical experience and to acquire a
feeling how to proceed. To this end we are going to discuss some concrete examples as presented
below.

We start with the following motivating example of a 3-valued logic £ taken from [RB881, p.169,
as a first illustration of our method. The bivariate operations AND, OR, IMPLY of that example
are given by the tables (cf. {RB88], loc.cit.)

AND T F
T T*F

* *F

F FFF

In the following considerations we shall use a technically shorter notation for displaying the
truth table of such bivariate logical functions just using the 3 x 3—matrix consisting of the
image values of such a function:

IT F
1* F
[~FF
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Analogously, the OR function is given by

TTT
T* *

T*F

and the IMPLY function is defined by

F
TTF
TTT

By technical reasons we rename the symbols for the truth values as follows, setting a := T,
b := *, c := F. Symbolically, we then obtain the set of (“global”) values cZ = {a,b,c}.

Below we are briefly describing the principle how the given 3-valued logic £ can be derived from
the free parallel system £~, the logical fibering consisting of 3 classical 2-valued subsystems
denoted L1, L2, L3 (fibers) — cf.{Pfa9lal for the details.
The global values of £~ are given by the 6 local values {T~, F~}, i = 1,2,3, of the three subsystems:

c~3= {T1,F1,T2,F2,T3,F3}.

The procedure of deriving £ from £~ can be briefly formulated as follows:

• Find a suitable equivalence relation on ~23 such that the set of residue classes Q :=

yields the global value set {a, b, c} of the given logic £.

• Express each given logical connective AND, OR, IMPLY in terms of a family of local
classical connectives (i.e. triples) defined in each of the three local subsystems L1, L2, L3,
respectively.

• These representations have to be compatible with the equivalence relation on ~ ([Pfa9laj).

In some respect this procedure can be considered to be a a construction following the generators
and relations principle.

Method of decomposition:
~,From a 3-valued bivariate logical operation represented by a 3 x 3-value matrix consisting of
the image values of a corresponding logical function {a, b, c} x {a, b, c} —+ {a, b, c} we derive
three 2-valued classical operations given by the three 2 x 2-submatrices along the diagonal of
the 3 x 3-schema — interpreted in £~.

That means each of the 2 x 2-submatrices belongs to the possible 4 index pairs formed by a
selected pair of indices i,j, namely {(i,i),(i,j),(j,i),(j,j)}, where i < j and i,j is running
through 1,2,3.

Thus, for a general rn-valued bivariate operation we obtain the amount of n := ( ~ ) subope

rations defined in a corresponding 2—valued “local subsystem” (forming a fiber of the decompo
sition). For the logical values of each 2 x 2-submatrix we use the same total ordering which we
define on the global values {a, b, c}, here we take a < b < c. For example, the AND operation
leads to the first 2 x 2-submatrix ({1, 2}-submatrjx)
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ab
bb

which is interpreted in the first subsystem L1 of £~, hence in terms of the local truth values
{T1,F1} of L1. We obtain locally: a = T1,b = F1. Obviously this represents locally a classical
conjunction — symbolically expressed by x1 A Yi•

Analogously we derive the {2, 3}-submatrix and the {1, 3}-submatrix and obtain the local con
junctions x2 A Y2 and x3 A y~, respectively.
These are all considered as local logical operations in the free parallel logical system (fibering)
£~. Summarizing, we obtain the bivariate operation:

( x1 A Yi
XAAAY=I x2Ay2

X3 A ~

In order to find the representation of the originally given OR in £ derived from that decomposi
tion X A A A Y in £~ we have to define a suitable E-relation on ~ to identify the corresponding
equivalence classes and to check whether this is compatible with all the three originally given
bivariate operations. We demonstrate this with the example AND:
The second submatrix w.r.t. the indices {2, 3} is given by:

bc
c c

This induces the local T,F-scheme

T2 F2
F2 F2

w.r.t. the correspondence T2 +-+ b, F2 4 c. This again yields a classical conjunction x~ A Y2 in
the subsystem L2 of £~.

The (third) {l, 3}-submatrix which can be derived from the given 3 x 3-matrix is

a c
cc

leading to

T3 F3
F3 F3

w.r.t. T3 ~-* b, F3 ~-* c in subsystem L3 of £~. This yields x3 A y3. Altogether we obtain
X A A A Y in £~.

Noticing that ~ = {a, b, c} is the set of global values which shall be obtained from ~ as a set
of equivalence classes c2~/ we can read off the following equivalence relation on ≤~ from the
above identities:
T1 T3 leads to class a. Let [T1] denote the equivalence class of T1 then [T1] = [T3] = a,
analogously F1 T2, F2 F3 such that [F1] = [T2] = b, and [F2] = [F3] = c.
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We summarize the previously introduced decomposition of AND in the following schematic
drawing:

______ in ____

in~ inL1

albici IT2IF~ ___

____________ _______ IbidI

bIbIcI LF2~F2I inL2

___ __ Ic~c~

AND I I

Icicici

T~1F3~ Ia[~1 inL3

IF3~F3I IcIcI

AND leads to
x1 A Yi

XAAAY= ( x2Ay~ I
X3 A ~ I

in £~ with E on f~ given by

a = [Ti] [T3],b = [F1] = {T2],c = [F2] = [F3].

We can therefore represent AND by the operation X A A A Y interpreted in £ w.r.t. 12 = (Q3/ E

) = {a, b, c} corresponding to the above identities on the truth values of IZ~.

In this setting we have parallelized AND by the operation X A A A Y consisting of 3 con
junctions deduced from £~.
Analogously, we give the presentation of OR and IMPLY following the above method.

______ iii _____

T1 I T1 I a I a Iin~ IT1~F1~ La~b~ inL1

laIa1~1

_____________ 1T21T2 I IbIbi_________ in L2___ T2~F2~ - bIc~

[~jb~c~
OR 1a~t~i 1T31T31 laIai

inL3

_____ laid,

The corresponding identifications are:

a = [T1] = [T3],b= [F1] = [T2],c = [F2] = [F3].

These are the same relations as obtained from AND — in this sense both representations are
compatible with the given equivalence relation
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OR is thus representable as

I x1 V Yi
xvvvY=I x2Vy2 ~,

X3 V y~ I
similarly as AND.

_______ in £~ _____

C __ inL~
T2F1 ac

IMPLY : : : T2 T2 a a in L2

__ __ inL~

In £~ we obtain:

( Xj —

X —+—~--~ Y = — Y2

y3

The induced identifications on the value set ~ are given by

a = [Ti] = [T2] = [T3], b = [F1], c = [F2] = [F3].

This differs from the above ~-relation in the class represented by a, namely for imply we have
to identify T2 T1 in contrast to T2 F1 in AND and OR.
This yields an incompatibility: with respect to the previous ~-re1ation IMPLY cannot be repre
sented as X ~ Y in the same way as we did this for OR, AND.

But it is possible to repair this, i.e. to make all 3 connectives compatible with the originally
chosen E-relation on Q~ if we apply the concept of transjunction (cf. [Pfa9la] for the definition).
Recaffing, a transjunction in subsystem L~ is a local bivariate operation, defined on the values of
L~, which distributes its image values over different subsystems. In accordance with our notation
it is defined by a value matrix like, e.g.

T~F1 T~F~
F~F, F7F3

In terms of valuations it can be described locally by the formula

w~.~3(,) = X(Tt,Tg)(,) zv~~~~9(,) +

~ +
w~~~i9(,) +

Application of this to the above problem yields:
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laic T2 F21
The second submatrix corresponding to in subsystem L2 leads to an

a a T2 T2
incompatibility. But it would be compatible_with the E-relation obtained from the AND, OR

representation if it were of the form

We can achieve a representation of IMPLY of the form X —~~---~ 1’ deducing it from the
parallel system £~ where the second local operation x2 =~ Y~ is a suitable transjunction defined

by abivariate operation defined as —+ ~1u~2 given by and denoted by ~.

Note that this is a local bivariate operation defined in L2 with values distributed over the two
subsystems L1 and L2. As a T-F-pattern this is of the type of an implication table, we therefore
also can describe this transjunction by: =~= Do —, where —: Q2 X ~ —p ≤~2 is a classical
implication and V : ~l2 —~ ~i U ~2 distributes the values over 2 subsystems corresponding to
T2i—~T1,F2,-~F2.
In this way we can express IMPLY by X —+~----~ Y and this is compatible with the original
equivalence relation.

We verify this only for the local input [T2, F2] to the second operation =~ since this is the only
critical situation:
Recall that IMPLY is evaluated by the local evaluations of — and ~‘t and —~ corresponding to
our representation, which can be performed in parallel. Note that we must take into account
the given E-relation.
Inputing the four possible pairs formed by b = [T2], c = [F2] we obtain the correct second
submatrix of IMPLY.

Remark: We point out again that the whole 3 x 3-value matrix that defines IMPLY is represen
ted by the evaluation procedures of the three bivariate operations —, ~j, —+; this can be done
in parallel.

Remark: The compatibility condition with respect to the three suboperations (submatrices)
can be expressed as follows (cf. [Pfa9la]):
The three 2 x 2-matrices have to be merged to a 3 x 3-matrix scheme along the diagonal of the
3 x 3-matrix such that the corresponding diagonal elements match (i.e. the 2 x 2-matrices are
the suitable submatrices).
In this sense our decomposition method is the reverse process to this merge.

We conclude this section by illustrating the method described above with a more complicated
example which actually is the implication operation of a 4-valued Lukasiewicz Logic. We include
it here as an exercise and a preparation of the more general discussions following below.
The decomposition of the IMPLY operation leads to the following result containing transjunc
tions as shown in the figure:
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________ in £~ ______

T1 F1 a b
in L1

T1 T1 a a

T2 F2 a c
inL2

int T2 T2 a a

b d T3 F3 a da C inL3
a a 5 [~T3 a a

IMPLY a a a S I
T1 F1 a

in L4 - Transjunction!a a a a [T1 a a

T2 F2 a c
in L5 - Transjunction!

T2 T2 a a

T1 F1 a S
in L6 - Transjunction!T1 T1 a a

After these “experimental considerations”, the following section discusses a more general case.

3 The n-valued Lukasiewicz Logic L~

The procedure described above for the 3-valued Lukasiewicz logics can be easily generalized to
the n -valued case (for a presentation of Lukasiewicz n -valued logics see for example [Luk3O],
[Luk7O] and [TJrq86]).

Let L~ = {O, ~-‘-r’• •~ ~ 1} be the set of truth values for the n-valued Lukasiewicz logic, with
the usual order, 0 < < _L~. < ... < < 1. The truth tables of the logical operations can
be established on basis of the following definitions:
—‘a=l—a
a V S = max(a, b)
a A b min(a, b)
a—* 5= min(1,l-i-b-.-a)
a ~-* b 1— Ia — ~I

Note that the usual order on L~ coincides with the (total) order induced by V (or, equivalently,

by A). Consider the set I = {(i,j) e L~I i < j}. Let ~ (i,j) E I be the ( ~ ) local

subsystems, with local truth values ~ = {F1,~, T~,3}.
Let Q H(~,2)~I ~ be the set of global values. Cojisider the equivalence relation E ~ii fl that
induces the identifications

[T1,k] = [Fk,3] for every i, j, k such that i < k and k <j

in the quotient set !~/ 2 such that we have a bijective correspondence between fl/ 2 and L~ i.e.
for all i,j with i < k < j, [T~,k] = [Fk,~] corresponds to k E L~. This implies that the relation
2 can be chosen such that:
T~,k 2 T,,k, for all i,j, k such that i < k and j < k,
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Fk,i E Fk,~ for all i,j, k such that k < i and k <j,
T2,3 F3,k for all i,j, k such that i < k < j.

For the case n = 4, the situation is graphically described in Figure 1.

T 0. 2/3

T
0,113

:tttzzt~

This graphical illustration is related to the use of mediation schemes in PCL (cf. [KM94], p.
166-168 and {Pfa9lb]).

We refer here also to Nicolas Zabel’s work who started own investigations in that direction, cf.
[Zab92].
As before, the operations induced by AND and OR in these subsystems are the classical con
junctions and disjunctions; the attempt of decomposing the IMPLY operation leads to the
appearance of transjunctions. -

First consider the AND operation, with the truth table given by i A j = min(i,j).
The induced conjunction on the local subsystem £j,j, where i <j is the classical conjunction:

A j i ~ T~,3
j j i hence in ~ we have ~ ~
i i i F~,7 ~

F1,~

. - F~,3

The operation OR has the truth table given by i V j = max(i,j). The induced disjunction on
the local subsystem ~ where i <j is the classical disjunction:

V j ~J v~ T~ _____
j j j hence in ~lj,j we have ~ ~
i j i ~ ~

Consider now the implication, with the following truth table:

1

213

1/3

0

T T T
0,1 1/3,1 2!3,1

F 1/3,213 F 1/3, 1

F
0, 1

F0113 F0,2/3

Figure 1:

T~,3.
~
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—~ 1 !izi flz~ i~ on—i n—i n—i n—i

ii n—2 n—3 2 1 o
n—i n—i n—i n—i

n—2 1 n—2 3 2 1
n—i n—i n—i n—i n—i

-a-i i i m~n—i n—i n—i

~ 1 1 i i n-2
n—i n—i

1 1 1 • . 1 1 1

We note that the operation induced on the local subsystem £i,j, where i < j is:

L-~Ii I
T~

we have ~ Ti(~~),1 Fi(~_~),1

~ T1(~~),1 Ti_(~~),i

—+13: fl,~, x —+

j 1 1 — (j — i) hence in
i 1 1

this means that the induced operation is a transjiinction

Note that ~1—(j—i),i =

Remark: The construction described above can also be applied for structures of the form
(F, ≤), where ≤ is a partial order on P. The P can be possibly endowed with additional
operations. Let I {(i,j)Ii,j E F, i < j} be the index set and consider the local subsystems
P~j, (i,j) E I, with sets of local truth values ~ = {T1,~, F1,~} for (i,j) e I. The equivalence
relation on the disjoint union of the local truth values, ~2 = JJ(j j)EI ~ can be defined similarly,
namely by imposing [T1,k] = [Fk,j] for every i,j, k e P such that i < k <j in the quotient set

E. The equivalence class [T1,k] = [Fk,~] will be put into correspondence with the element
k E P. The induced (total) order relation in the 2-element subsystems, F1,, < T1,~, will be
compatible with the partial ordering in the given partially ordered set (F, <). Decomposing the
additional operations on P may lead to some transjunctions.

3.1 Kleene’s System

We will show how the method previously described can be applied to Kleene’s 3-valued logic,
introduced by Kleene in {Kle38], see also [K1e52] and [Urq86]. The decomposition of this logical
system has also been studied by Nicolas- Zabel in [Zab92].

The set of truth values in Kleene’s 3-valued logic is IC = {O, ~, 1}, where 0 stands for “false”,
1 for “true” and ~ for “undefined”. The motivation for Kleene’s logic arises from the theory of
recursive functions. If we consider a machine designed to answer “true” or “false” to certain
questions, then for certain inputs the machine may not provide an answer (by going into an
infinite ioop, or by exhausting its computing capacity). Ill that case, we think of the machine’s
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response as “undefined”. The truth tables for the connectives reflect this motivation. We will
show how the method presented before can be applied in order to obtain a decomposition for
the Kleene’s system.

• The given set of truth values is K {0, ~, l} with the usual ordering 0 < < 1.

• The index set for the subsystem (fibers) will be in this case I = {(0, ~), (0, 1), (~, l)}.

• We obtain 3 local subsystems, with sets of local truth values ~ = {T1,~, ~ for (i,j) E I.

• Let f~ = H~ f~j,j be the global set of truth values.

• Let the equivalence relation on f~ be defined by

~ Tk,~, ~ F~,k, ~ T~

(then there is a bijective correspondence between ~/ and IC.)

• The task remains to express each given logical connective in terms of a family of local
classical connectives defined in each of the three local subsystems.

The decomposition of the logical operations is summarized in the following schematic drawings.
The AND operation decomposes into local classical conjunctions:

The OR operation decomposes into local classical disjunctions:

A01 T01 F01

T0 T0 F0,~

F01 F01 F01

/Al 1 02
11 1 02

1 1 1 0
~

00 0 0

1 1
22

00 0

Al 0
11 0

00 0

A~l ~.

l~l ~

liii 1
L2J2 2

A0,1 T0,1 F0,1

in L~1
‘2

+-+ in L0,1

in L1
2’

T0,1 T0,1 F0,1

F0,1 F0,1F0,1

A1 T11 F1~,1 .,,

T11 T11 T11
2’ 2’ 2’

F1, T11 F11
2’ 2’ 2’
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/
V~ 0
1 1 1
22 2

0 ~ 0

in L~1
‘2

‘vii ~I
~1~1 ~1 _ in L0,1

L9j~ 0~

vi
11

1! 1
22 ~

in L1
2’

Vi~ T1 F~
2’ 2’

T11 T11 T11
2’ 2’ 2’

F1, T1 F1
2’ 2’ 7’

The attempt to decompose the IMPLY operation gives rise to transjunctions:

0~ 2LinLol

1 0
Ii 1 0

4—4- in L0,1

LQ’’

4-4 in L1
2’

1 0
2

11 1 1

ii 1 1
2 2 2

01 1 02

V0,1 To,1 F0,1
T0,1 T0,1 T0,1

F0,1 T0,1 F0,1

T0,1 F0,1

T01 F~1 F11
‘2 2’ 2’

F1 T1. F10,7 7, 2’

~~0,1 T0,1 F0,1
T0,1 T0,1 F0,1

F0,1 T0,1 T0,1

—u T1 F1
2’ 2’ 2’

T11 T11 F11
2’ 2’ 2’

F11 T11 F11
‘‘ 2’
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3.2 Bochvar’s System

Bochvar uses many-valued logic as a means of avoiding the logical paradoxes. His system contains
the truth values B = {0, ~, 1}, where 0 stands for “false”, 1 for “true” and ~ for “meaningless”.
Bochvar’s tables for his connectives are as follows: when only the values 0 and 1 are involved,
they are exactly the same as their classical counterparts; any formula containing “meaningless”
is meaningless. The truth tables reflect these motivations. For further details we refer to [Urq86].
The application of our decomposition method yields:

• The given set of truth values is B {0,~,1}, with the usual ordering 0< ~ < 1.

• The index set is I = {(0, ~), (0, 1), (~, 1)}.

• The 3 resulting local subsystems are fZj,j = ~~ for (i,j) e I and the set of global
truth values is ~ = H~,3 ~

We will give a short discussion about the choice of the equivalence relation on f~; and we will
show why in this case for one of the connectives AND / OR, not all the induced local operations
will be of the same type (i.e. all local conjunctions, resp. disjunctions). It follows a schematic
representation of the decomposition of such systems.
The AND connective decomposes in the following way (note that in this case the induced equi
valence relation is defined as before by imposing ~ Tk,~, ~ F~,k, ~ Tk,~ ).

Let ≤v be the order induced on B by the OR operation. It is obvious that ≤v does not coincide
with the given order on B, ~. Therefore the local operations induced by V on the subsystems
~ i < j, are not all classical disjunctions. Namely, in the order <~, induced by V we have
0 <~, 1 <,, ~. The local operations corresponding to the pairs (0, ~) and (0, 1) (on which the
initial ordering coincides with the ordering induced by V) are classical disjunctions, but the local
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operation induced in the subsystem L1, is a conjunction, because we have 1 < ~, but on the

other hand ~ <v 1.
The decomposition of the OR connective can be summarized in the following schematic drawing:

The decomposition of the IMPLY operation can be schematically represented as follows:
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We finish these experimental studies by giving a summarizing “metalevel language” description
of the proposed decomposition procedure (algorithm). We are aware that in an exact descrip
tion of a decomposition algorithm we should come to a “standard way” of constructing such
representations. In what we are doing so far with the examples given above there are in princi
ple various ways to get suitable equivalence relations depending on , among others, with which
logical operation we start the decomposition. Heading towards a suitable “normal form” of a
decomposition we would like to exploit our experimental experiences with the examples. With
this in mind we tend to propose to start a decomposition procedure always with the AND and
OR connectives and then “tune” the IMPLY and others accordingly since there more frequently
problems arise (like the need to resort to transjunctions and so). Another important constraint
will be to have as many classical local operations in the components of a decomposition as
possible. This is of course a desirable goal as we poillted out in our previous discussions. Still
far from having found a satisfying solution of a kind of “normal form” we formulate (in meta
language) the following

Decomposition Procedure (preliminary version):
Let £ be a logical system and L its set of truth values. Let < be a given total order on the
elements of L. Assume that the truth tables of selected logical connectives of L are given.
The decomposition procedure for L can be stated hi meta-language as follows:

Input: L, the set of truth values of the logical system £,
<,a total order on
a set of (bivariate) logical connectives of £,
the truth tables for these logIcal connectives (e.g. V, A, =~, ...).

Task: Find a decomposition of the connectives into a number of 2-valued components,
based on a corresponding underlying logical fibering.

Begin
Step 1 Let I = {(i,j) I i,j e L, i < j} be the set of all possible pairs of distinct elements of L.

Let f2j,~ = {T1,3, ~ be the local truth values of the local subsystems
corresponding to the elements of I.
Let !2 = Jj~~ ~ be the set of global truth values.

Step 2 Express each given connective on L in terms of a family of local classical connectives
defined on each of these logical subsystems.

Step 3 Find a suitable equivalence relation on 1~ (compatible with the operations),
such that the quotient set, 1~/ yields the set L of truth values of the given logical
system £.

End
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With this vague description we would like to briefly summarize the decomposition procedure ap
plied in the previous concrete cases. Using this principle of “factoring out” a suitable equivalence
relation on the global set ≤~, leading to the quotient ~2/ ~, weare thinking at the “generators and
relations” principle which is often applied in mathematics (e.g. combinatorial group theory). In
our case ~l plays the role of a free generator system.
Looking further for decomposition of more general formulas we can restrict our work to taking
into account only a minimal set of “generating” logical operations (like NOT and OR in 2-
valued system) and perform fiberwise operations (i.e. in parallel) being aware that handling of
transjunctions needs a dedicated calculus (work in progress).

With a remark how it might be possible to apply the decomposition method to results presented
in [CRAB91] we are finishing this section. In their work these authors develop a method to
translate logical formulas of an rn-valued logic into corresponding polynomials. This approach
generalizes the Stone isomorphism in classical 2-valued logic. It is working with multivariate
polynomials over finite fields (Galois fields). A crucial point in that article is that the authors can
translate a problem of derivability of a formula from a given set of formulas into a corresponding
problem of ideal membership. This naturally leads to the application of Buchberger’s Gröbner
basis algorithm and thus to the deployment of computer algebra systems. This is the point
where we think that our decomposition method might be usefully exploited in the following
direction. Assuming that the decomposition of a given many valued space into a fibering can
also be transformed canonically into the polynomial algebra case leads to the following aspects:
a given decision problem then can be fully parallelized, i.e. manipulations can be done fiberwise
in parallel, and even more, in each fiber (component) we have in many cases classical logical
formulas to handle that means that the corresponding polynomials have degree not greater than
two (!). If we have to deal with certain transjunctions (as discussed in examples above) we
only have to consider a well known restricted class of operations and, again, the corresponding
polynomials have bounded degree (maximally degree four). Having bounded small polynomial
degrees might be a big advantage in Gröbner basis applications, because high polynomial degrees
can cause heavy problems to computer algebra systems.

4 Concluding Remarks

We conclude this experimental case study with some summarizing comments and prospects of
work. As indicated in several places iii the previous work the basic intention is to use the
notion of logical fiberings (which form logical systems consisting of indexed subsystems) to
decompose a given many valued logical space into subsystems (fibers) such that all the many
valued logical operations can be decompbsed, accordingly. In most concrete cases this results in
getting classical 2-valued operations “fiberwise” (in the corresponding components or fibers), but
it can happen that it is necessary to resort to so-called transjunctions. These transjunctions form
in a certain way a “minimal” nonclassical bivariate extension of a classical 2-valued operation,
because each transjunction has the same “T-F-pattern” for its truth table but the image values of
such a logical function can be distributed over (maximally four) different truth values from other
subsystems. This means that in all decomposition tasks we have to deal with classical connectives
and possibly such transjunctions in the fibers (subsystems or components) of a decomposition,
respectively. This reduces the amount of work to these restricted classes of operations. What we
gain with decomposing many valued systems can be described as follows: the representation of
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a logical space as a fibering leads to a natural parallelization and the fiberwise consideration of
the connectives. Moreover, in the fibers it is possible to work classically (2-valued) modulo the
possible appearance of transjunctions, but these form a well known restricted class of operations
(maximally 4-valued). Aiming at a general representation theory for many valued logics (with a
general decomposition algorithm) would provide us with the previously mentioned advantages
and furthermore would allow to combine decompositions in a flexible way in the sense that we
can decompose a big many valued space into many valued components of less size up to two
valued subsystems. Thinking even further, as already mentioned, the fiberings concept allows
to “mix” logics of different type also. Concerning intended future implementation work we are
thinking at the following two aspects of computer applications to the work discussed in this
article. On one hand we are thinking at using the system Elf (on basis of standard ML) and
furthermore at building a new module (for logical fiberings) within the powerful ATINF system
(cf. [CR]) of Ricardo Caferra’s group at LIFIA-IMAG, Grenoble. These concluding remarks
form the basis of prospects for future work in that direction.
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